Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1333236, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38681219

RESUMO

Tobacco is a valuable crop, but its disease identification is rarely involved in existing works. In this work, we use few-shot learning (FSL) to identify abnormalities in tobacco. FSL is a solution for the data deficiency that has been an obstacle to using deep learning. However, weak feature representation caused by limited data is still a challenging issue in FSL. The weak feature representation leads to weak generalization and troubles in cross-domain. In this work, we propose a feature representation enhancement network (FREN) that enhances the feature representation through instance embedding and task adaptation. For instance embedding, global max pooling, and global average pooling are used together for adding more features, and Gaussian-like calibration is used for normalizing the feature distribution. For task adaptation, self-attention is adopted for task contextualization. Given the absence of publicly available data on tobacco, we created a tobacco leaf abnormality dataset (TLA), which includes 16 categories, two settings, and 1,430 images in total. In experiments, we use PlantVillage, which is the benchmark dataset for plant disease identification, to validate the superiority of FREN first. Subsequently, we use the proposed method and TLA to analyze and discuss the abnormality identification of tobacco. For the multi-symptom diseases that always have low accuracy, we propose a solution by dividing the samples into subcategories created by symptom. For the 10 categories of tomato in PlantVillage, the accuracy achieves 66.04% in 5-way, 1-shot tasks. For the two settings of the tobacco leaf abnormality dataset, the accuracies were achieved at 45.5% and 56.5%. By using the multisymptom solution, the best accuracy can be lifted to 60.7% in 16-way, 1-shot tasks and achieved at 81.8% in 16-way, 10-shot tasks. The results show that our method improves the performance greatly by enhancing feature representation, especially for tasks that contain categories with high similarity. The desensitization of data when crossing domains also validates that the FREN has a strong generalization ability.

2.
Sensors (Basel) ; 23(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37631801

RESUMO

We propose an improved BM3D algorithm for block-matching based on UNet denoising network feature maps and structural similarity (SSIM). In response to the traditional BM3D algorithm that directly performs block-matching on a noisy image, without considering the deep-level features of the image, we propose a method that performs block-matching on the feature maps of the noisy image. In this method, we perform block-matching on multiple depth feature maps of a noisy image, and then determine the positions of the corresponding similar blocks in the noisy image based on the block-matching results, to obtain the set of similar blocks that take into account the deep-level features of the noisy image. In addition, we improve the similarity measure criterion for block-matching based on the Structural Similarity Index, which takes into account the pixel-by-pixel value differences in the image blocks while fully considering the structure, brightness, and contrast information of the image blocks. To verify the effectiveness of the proposed method, we conduct extensive comparative experiments. The experimental results demonstrate that the proposed method not only effectively enhances the denoising performance of the image, but also preserves the detailed features of the image and improves the visual quality of the denoised image.

3.
Plants (Basel) ; 11(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36365267

RESUMO

Few-shot learning (FSL) is suitable for plant-disease recognition due to the shortage of data. However, the limitations of feature representation and the demanding generalization requirements are still pressing issues that need to be addressed. The recent studies reveal that the frequency representation contains rich patterns for image understanding. Given that most existing studies based on image classification have been conducted in the spatial domain, we introduce frequency representation into the FSL paradigm for plant-disease recognition. A discrete cosine transform module is designed for converting RGB color images to the frequency domain, and a learning-based frequency selection method is proposed to select informative frequencies. As a post-processing of feature vectors, a Gaussian-like calibration module is proposed to improve the generalization by aligning a skewed distribution with a Gaussian-like distribution. The two modules can be independent components ported to other networks. Extensive experiments are carried out to explore the configurations of the two modules. Our results show that the performance is much better in the frequency domain than in the spatial domain, and the Gaussian-like calibrator further improves the performance. The disease identification of the same plant and the cross-domain problem, which are critical to bring FSL to agricultural industry, are the research directions in the future.

4.
Front Plant Sci ; 13: 907916, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186021

RESUMO

Image-based deep learning method for plant disease diagnosing is promising but relies on large-scale dataset. Currently, the shortage of data has become an obstacle to leverage deep learning methods. Few-shot learning can generalize to new categories with the supports of few samples, which is very helpful for those plant disease categories where only few samples are available. However, two challenging problems are existing in few-shot learning: (1) the feature extracted from few shots is very limited; (2) generalizing to new categories, especially to another domain is very tough. In response to the two issues, we propose a network based on the Meta-Baseline few-shot learning method, and combine cascaded multi-scale features and channel attention. The network takes advantage of multi-scale features to rich the feature representation, uses channel attention as a compensation module efficiently to learn more from the significant channels of the fused features. Meanwhile, we propose a group of training strategies from data configuration perspective to match various generalization requirements. Through extensive experiments, it is verified that the combination of multi-scale feature fusion and channel attention can alleviate the problem of limited features caused by few shots. To imitate different generalization scenarios, we set different data settings and suggest the optimal training strategies for intra-domain case and cross-domain case, respectively. The effects of important factors in few-shot learning paradigm are analyzed. With the optimal configuration, the accuracy of 1-shot task and 5-shot task achieve at 61.24% and 77.43% respectively in the task targeting to single-plant, and achieve at 82.52% and 92.83% in the task targeting to multi-plants. Our results outperform the existing related works. It demonstrates that the few-shot learning is a feasible potential solution for plant disease recognition in the future application.

5.
Biomed Res Int ; 2019: 6547982, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31886237

RESUMO

Estimating the motions of the common carotid artery wall plays a very important role in early diagnosis of the carotid atherosclerotic disease. However, the disturbances caused by either the instability of the probe operator or the breathing of subjects degrade the estimation accuracy of arterial wall motion when performing speckle tracking on the B-mode ultrasound images. In this paper, we propose a global registration method to suppress external disturbances before motion estimation. The local vector images, transformed from B-mode images, were used for registration. To take advantage of both the structural information from the local phase and the geometric information from the local orientation, we proposed a confidence coefficient to combine them two. Furthermore, we altered the speckle reducing anisotropic diffusion filter to improve the performance of disturbance suppression. We compared this method with schemes of extracting wall displacement directly from B-mode or phase images. The results show that this scheme can effectively suppress the disturbances and significantly improve the estimation accuracy.


Assuntos
Artérias Carótidas/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Algoritmos , Doenças das Artérias Carótidas/diagnóstico por imagem , Humanos , Movimento/fisiologia , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...